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TA: LEE, Yat Long Luca
Email: yllee@math.cuhk.edu.hk
Office: Room 505, AB1
Office Hour: Send me an email first, then we will arrange a meeting (if you need it).

Solution will be uploaded after the tutorial on Wednesday.

Recall:

Theorem 3.10 (Picard-Lindelöf Theorem)
Consider the IVP given by !

"

#

dx
dt

= f (t, x)

x(t0) = x0

where f ∈ C(R) satisfies the Lipschitz condition on

R := [t0 − a, t0 + a]× [x0 − b, x0 + b] = Ba(t0)× Bb(x0).

Then there exists a′ ∈ (0, a) and x ∈ C1(Ba′(t0)) , x(t) ∈ Bb(x0) for all t ∈ Ba′(t0) such
that it solves the IVP above and the solution is unique in Ba′(t0).

Recall from your ODE course that ODE of any order can be written as a system of first
order ODEs, and that the Picard-Lindelöf theorem is still valid for system of first order IVPs.

Let (X, d) be a metric space

• Cb(X) ⊂ C(X)

• If G is bounded and open in Rn, then Cb(G) = C(G)

• (Cb(X), d∞) is a complete metric space, for any metric space (X, d)

• A subset E ⊂ X is precompact if every sequence in E contains a convergent subsequence
(its limit may or may not be in E). If the limit is in E, then E is compact.

• A subset C of C(X) is equicontinuous if for all ε > 0, there exists δ > 0 such that

| f (x)− f (y)| < ε, ∀ f ∈ C and d(x, y) < δ

for x, y ∈ X. Any subset of C is equicontinuous.

• f : G → R is Hölder continuous with exponentα ∈ (0, 1) if

| f (x)− f (y)| ≤ L|x − y|α , ∀x, y ∈ G and some constant L

Proposition 4.1 Let C be a subset of C(G), where G is convex in Rn. Suppose that each
function in C is differentiable and there is a uniform bound on their partial derivatives.
Then C is equicontinuous.
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More on Compact sets

Definition 1.1 Let (X, d) be a metric space, a set A ⊂ X is said to be totally bounded if for every
ε > 0, A can be covered by finitely many open balls of radius ε. Such an open cover by finitely
many open balls with radius ε > 0 is called a finite ε-net.

Definition 1.2 Let (X, d) be a metric space. A subset K ⊂ X is said to be compact if for
any open coverings {Uα}α∈A of K, there exists a finite subcovering {Uαi}n

i=1 of K. That is,
if for any {Uα}α∈A such that K ⊆ !

α∈A Uα, then there exists {Uαi}n
i=1 ⊂ {Uα}α∈A such that

K ⊆ !n
i=1 Uαi .

Remark: The "Compactness" defined in MATH3060 is in fact called "sequential compactness". We
will show that these two definitions are equivalent over any metric spaces.

Theorem 1.3 Let (X, d) be a metric space and K ⊂ X. Then the following are equivalent:

(i) K is compact

(ii) Every sequence in K has a convergent subsequence which converges in K

(iii) K is complete and totally bounded

Proof:
(i) =⇒ (ii)

We prove it by a contrapositive argument. Suppose that K is not sequentially compact, then
there exists a sequence {xn} such that it does not contain a subsequence which converges in K.

For all x ∈ K, if every ball centered at x contains infinitely many elements, then we are
done, in the sense that we can construct a converging sequence. We do it by constructing the
sequence as follows: Consider the ball B(x, 1

k ) for k ≥ 1. For k = 1, since B(x, 1) contains
infinitely many elements, we can pick xn1 ∈ B(x, 1). Then for k = 2, we pick xn2 ∈ B(x, 1

2 )

with n2 > n3, such a xn2 exists because B(x, 1
2 ) contains infinitely many elements. We keep

doing it for all k and obtain {xnk}k with nk+1 > nk for all k ≥ 1. Then this sequence tends to x
as k → ∞. Which contradicts the fact that K is not sequentially compact.

Hence, we deduced that the open balls contain only finitely many elements. Now, for all
x ∈ K, pick a ball, Bx which centers at x. Then {Bx}x∈K forms an open cover of K. But then
a finite subcover of this collection will only cover finitely many points in K, which implies K
does not admit a finite subcovering, further implies that K is not compact.

(ii) =⇒ (iii)
Suppose that K is sequentially compact, we would like to show that K is both complete and

totally bounded.

We first show that K is complete. Pick a Cauchy sequence {xn} in K, since K is sequentially
compact, there exists a subsequence of {xn} such that it converges to a point in K. But this is
not enough, we need to show that {xn} converges in K too.
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Lemma 1.4 If {xn} is a Cauchy sequence and suppose that there exists a subsequence
{xn j} of {xn} such that xn j → x as j → ∞. Then xn → x as n → ∞. This concludes the
part where K is complete, because Cauchy sequence converges to the limit of its subsequence.

Proof of Lemma 1.4:
We want to show that for all ε > 0, there exists N ∈ N such that whenever n > N, we
have d(xn, x) < ε.

Since we are given that K contains a convergence subsequence, then there exists J ∈ N
such that for all j > J, we have d(xn j , x) < ε/2. Moreover, since {xn} is Cauchy, there
exists N ∈ N such that for m, n > M, we have d(xm, xn) < ε/2.

Since n j is increasing , there must exists j > J such that n j > N. Then for any n > N, we
have

d(xn, x) < d(xn, xn j) + d(xn j , x) < ε/2 +ε/2 = ε

Thus, we conclude Lemma 1.4 and completeness of K.
□

Now we proceed to show that K is totally bounded. That is, we want to show that for every
ε > 0, K can be covered by finitely many open balls with radius ε. We show this by construct-
ing a finite ε-net manually.

Pick x1 ∈ K, if B(x1,ε) covers K, then we are done. If not, since B(x1,ε) does not cover K,
we can pick x2 ∈ K \ B(x1,ε), if B(x1,ε) ∪ B(x2,ε) covers K, then we are done. We can repeat
this process for any xn. S

Now, suppose the above process ends after finitely many steps, then we are done. If not,
i.e., we can pick a point indefinitely, then we get an infinite sequence {xn}n∈N such that each
xn does not lie in B(x1ε) ∪ · · · ∪ B(xn−1,ε). In particular, d(xn, xm) ≥ ε for all n ∕= m. This
implies the sequence does not have a Cauchy subsequence. Since all convergent sequence is
Cauchy, this implies {xn} has no convergent subsequence, which contradicted the fact that K
is sequentially compact. Thus this process ends with finitely many steps, hence obtaining a
finite ε-net.

(iii) =⇒ (i)
(Leave it for the next tutorial. Will continue once you have learnt the diagonalization argu-

ment from the proof of Arzelà-Ascoli’s theorem.)
"
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Exercise 1

Let (X, dX) and (Y, dY) be two metric spaces and f : X → Y be a continuous map. Show that if
K ⊆ X is compact in X, then f (K) is compact in Y.

Solution:
Since we want to show that f (K) is compact, we may pick any open covering {Uα}α∈I of f (K)
such that

f (K) ⊆
"

α∈I

Uα

then show that there is a finite subcovering.

Since K is compact, and that {Uα}α∈I is an open covering of f (K), then { f−1(Uα)}α∈I is an
open covering of K, since

f (K) ⊆
"

α∈I

Uα =⇒ K ⊆ f−1

$
"

α∈I

Uα

%
=

"

α∈I

f−1(Uα)

then using the fact that K is compact, there exists a finite subcollection of { f−1(Uα)}α∈I such
that

K ⊆
n"

i=1

f−1(Uαi)

similarly,

f (K) ⊆
n"

i=1

Uαi

thus, {Uαi}n
i=1 is a finite subcovering of K.

"
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Exercise 2: Grönwall’s Inequality (Basic Case)

This a useful inequality in the theory of ODE.

Let L > 0 be a positive constant, and C be any real constant. Suppose y(t) is a continuous func-
tion defined on a time interval I containing t0 and satisfies

y(t) ≤ C +
# t

t0

Ly(s) ds (0.1)

for all t ∈ I. Then we have y(t) ≤ CeL|t−t0| for all t ∈ I.

Prove it.

Solution:
In this proof, we will show the case for t > t0. The proof for t < t0 is done similarly, thus it is
left for you to verify.

The proof of the Grönwall’s inequality uses a common technique called barrier method. The
idea of the barrier method is to see whether the solution, x(t) = CeL|t−t0|, of the integral equa-
tion

x(t) = C +
# t

t0

Lx(s) ds (0.2)

lies above the y(t) satisfying (0.1). Graphically, the desired result would be y(t) ≤ x(t) for all
t ≥ t0 where t ∈ I.

We will apply a commonly used trick in theory of ODE/PDE, called "ε-trick", to show our
desired result.

Given any ε > 0, for any t ∈ I, equation (0.1) can be written as

y(t) < (C +ε) +
# t

t0

Ly(s) ds (0.3)

Let xε(t) := (C +ε)eL|t−t0|, which satisfies

xε(t) = (C +ε) +
# t

t0

Lxε(s) ds (0.4)

for any t ∈ I.

At the point t = t0, from (0.3) and (0.4), we see that y(t0) < C + ε and xε(t0) = C + ε,
meaning that y(t0) < xε(t0).

Since we want to show that y(t) < xε(t) for all t ≥ t0 and t ∈ I, we assume that there exists
a t1 > t0 such that y(t1) = xε(t1), such a t1 is chosen such that this is the first time y and xε
intersects. In other words, y(t) < xε(t) for all t ∈ [t0, t1). Then

# t1

t0

(xε(s)− y(s)) ds > 0 (0.5)
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However, if we substitute t1 into (0.3) and (0.4), then

0 = y(t1)− xε(t1) <
# t1

t0

L(y(s)− xε(s)) ds

but (0.5) tells us that the integral should be strictly larger than 0. This, a contradiction.

Hence, y(t) < xε(t) for all t ≥ t0. Since ε is chosen arbitrarily, we may take ε → 0+ and
thus

y(t) ≤ lim
ε→0+

(C +ε)eL(t−t0) = CeL(t−t0)

for any t ≥ t0 and t ∈ I.
"
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Exercise 3: Grönwall’s Inequality (Variation)

This version of the Grönwall’s inequality replaced the positive constant L in the basic case by
a nonnegative continuous function v : (−∞, ∞) → R.

Let C be any real constant and v : (−∞, ∞) → R be a nonnegative continuous function. Suppose
u : [0,α] → R is a continuous function such that

u(t) ≤ C +
# t

0
v(s)u(s) ds (0.6)

for all t ∈ [0,α]. Then

u(t) ≤ C exp
&# t

0
v(s) ds

'
(0.7)

for all t ∈ [0,α].

Prove it.

Solution:
For any ε > 0, from (0.6), we know that

u(t) < (C +ε) +
# t

0
v(s)u(s) ds (0.8)

Now consider

xε(t) = (C +ε) exp
&# t

0
v(s) ds

'

we verify that it is a solution to the integral equation

f (t) = (C +ε) +
# t

0
v(s) f (s) dt ⇐⇒ f ′(t) = v(t) f (t)

( f is used for generality). Differentiate xε(t), we have

x′ε(t) = (C +ε)
d
dt

exp
&# t

0
v(s) ds

'

= (C +ε) exp
&# t

0
v(s) ds

'
d
dt

&# t

0
v(s) ds

'

= (C +ε) exp
&# t

0
v(s) ds

'
v(t)

= v(t)xε(t)

thus it is a solution. For later purposes, we write

xε(t) = (C +ε) +
# t

0
v(s)xε(s) ds (0.9)

Now we take a time t1 ∈ [0,α] such that t1 > t0 and u(t1) = xε(t1), which is the first time
such that u intersects xε . Then

# t1

0
(u(s)− xε(s)) ds > 0
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since v is nonnegative continuous,

# t1

0
v(s)(u(s)− xε(s)) ds ≥ 0 (0.10)

However, by (0.8) and (0.9) and substituting t = t1, we have

0 = u(t1)− xε(t1) <
# t

0
v(s)(u(s)− xε(s)) ds

which contradiction (0.10). Thus, u(t) < xε(t) for all t ∈ [0,α]. Taking ε → 0+, we have

u(t) ≤ lim
ε→0+

(C +ε) exp
&# t

0
v(s) ds

'
= C exp

&# t

0
v(s) ds

'

"
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