MATH3060 - MATHEMATICAL ANALYSIS III - TUTORIAL 9

TA: LEE, Yat Long Luca

Email: yllee@math. cuhk.edu.hk

Office: Room 505, AB1

Office Hour: Send me an email first, then we will arrange a meeting (if you need it).

Solution will be uploaded after the tutorial on Wednesday.

Recall:

Theorem 3.10 (Picard-Lindelof Theorem)
Consider the IVP given by
dx
{mf@@

x(to) = xo

where f € C(R) satisfies the Lipschitz condition on

R := [to —a,ty +a] X [X() —b,XQ—|—b] = Bu(to) X Bb(XQ).

Then there exists ' € (0,a) and x € C'(B(to)) , x(t) € By(xo) for all t € B, (tg) such
that it solves the IVP above and the solution is unique in B, (fp).

Recall from your ODE course that ODE of any order can be written as a system of first
order ODEs, and that the Picard-Lindelof theorem is still valid for system of first order IVPs.

Let (X, d) be a metric space
o Cp(X) C C(X)

e If G is bounded and open in R", then C,(G) = C(G)
e (Cy(X),dw) is a complete metric space, for any metric space (X, d)

e Asubset E C X is precompact if every sequence in E contains a convergent subsequence
(its limit may or may not be in E). If the limit is in E, then E is compact.

e A subset C of C(X) is equicontinuous if for all ¢ > 0, there exists § > 0 such that
f(x) = f(y)l <e, VfeCandd(x,y) <b
for x, y € X. Any subset of C is equicontinuous.
e f:G — Ris Holder continuous with exponent « € (0, 1) if

|f(x) — f(y)] < Llx—y|%, Vx,y € Gand some constant L

Proposition 4.1 Let C be a subset of C(G), where G is convex in R". Suppose that each
function in C is differentiable and there is a uniform bound on their partial derivatives.
Then C is equicontinuous.
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More on Compact sets

Definition 1.1 Let (X, d) be a metric space, a set A C X is said to be totally bounded if for every
¢ > 0, A can be covered by finitely many open balls of radius . Such an open cover by finitely
many open balls with radius ¢ > 0 is called a finite e-net.

Definition 1.2 Let (X,d) be a metric space. A subset K C X is said to be compact if for
any open coverings {Uq }qc4 Of K, there exists a finite subcovering {Uq, }! ; of K. That is,
if for any {Uy }e 4 such that K C Uy 4 U, then there exists {Uy, }"" ; C {Ux}xeca such that
KC Uzn:l uoci'

Remark: The "Compactness” defined in MATH3060 is in fact called "sequential compactness”. We
will show that these two definitions are equivalent over any metric spaces.

Theorem 1.3 Let (X, d) be a metric space and K C X. Then the following are equivalent:
(i) K1is compact
(ii) Every sequence in K has a convergent subsequence which converges in K
(iii) K is complete and totally bounded

Proof:
(i) = (i)

We prove it by a contrapositive argument. Suppose that K is not sequentially compact, then
there exists a sequence {x, } such that it does not contain a subsequence which converges in K.

For all x € K, if every ball centered at x contains infinitely many elements, then we are
done, in the sense that we can construct a converging sequence. We do it by constructing the
sequence as follows: Consider the ball B(x, ) for k > 1. For k = 1, since B(x, 1) contains
infinitely many elements, we can pick x,, € B(x,1). Then for k = 2, we pick x,, € B(x, 3)
with np > n3, such a x,,, exists because B(x, %) contains infinitely many elements. We keep
doing it for all k and obtain {x,, }; with 1y, > ny for all k > 1. Then this sequence tends to x
as k — oo. Which contradicts the fact that K is not sequentially compact.

Hence, we deduced that the open balls contain only finitely many elements. Now, for all
x € K, pick a ball, By which centers at x. Then {By}ycx forms an open cover of K. But then
a finite subcover of this collection will only cover finitely many points in K, which implies K
does not admit a finite subcovering, further implies that K is not compact.

(i) => (iii)
Suppose that K is sequentially compact, we would like to show that K is both complete and
totally bounded.

We first show that K is complete. Pick a Cauchy sequence {x,} in K, since K is sequentially
compact, there exists a subsequence of {x,} such that it converges to a point in K. But this is
not enough, we need to show that {x, } converges in K too.
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Lemma 1.4 If {x,} is a Cauchy sequence and suppose that there exists a subsequence
{xn;} of {xx} such that x,, — xas j — oco. Then x, — x asn — oo. This concludes the
part where K is complete, because Cauchy sequence converges to the limit of its subsequence.

Proof of Lemma 1.4:
We want to show that for all ¢ > 0, there exists N € N such that whenever n > N, we
have d(x,, x) < e.

Since we are given that K contains a convergence subsequence, then there exists | € N
such that for all j > ], we have d(x, y x) < ¢/2. Moreover, since {x,} is Cauchy, there
exists N € N such that for m,n > M, we have d(x,,, x,) < ¢/2.

Since n; is increasing , there must exists j > J such that n; > N. Then for any n > N, we
have
d(xp, x) < d(xn, Xp;) +d(xn;,x) <e/2+e/2=¢

Thus, we conclude Lemma 1.4 and completeness of K.
O

Now we proceed to show that K is totally bounded. That is, we want to show that for every
¢ > 0, K can be covered by finitely many open balls with radius e. We show this by construct-
ing a finite e-net manually.

Pick x; € K, if B(x1,¢) covers K, then we are done. If not, since B(x1,¢) does not cover K,
we can pick x; € K\ B(xy,¢), if B(x1,¢) UB(x2,¢) covers K, then we are done. We can repeat
this process for any x,. S

Now, suppose the above process ends after finitely many steps, then we are done. If not,
i.e., we can pick a point indefinitely, then we get an infinite sequence {x, },en such that each
x, does not lie in B(x1¢) U --- U B(x,_1,¢). In particular, d(x,, x,,) > ¢ for all n # m. This
implies the sequence does not have a Cauchy subsequence. Since all convergent sequence is
Cauchy, this implies {x, } has no convergent subsequence, which contradicted the fact that K
is sequentially compact. Thus this process ends with finitely many steps, hence obtaining a
finite e-net.

(iii) = (i)
(Leave it for the next tutorial. Will continue once you have learnt the diagonalization argu-

ment from the proof of Arzela-Ascoli’s theorem.)
[ |
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Exercise 1

Let (X,dx) and (Y, dy) be two metric spaces and f : X — Y be a continuous map. Show that if
K C X is compact in X, then f(K) is compactin Y.

Solution:
Since we want to show that f(K) is compact, we may pick any open covering {Uy }«cr of f(K)
such that

f(K) € | Ux

ael

then show that there is a finite subcovering.

Since K is compact, and that {Uy }«¢; is an open covering of f(K), then {f~!(Uy)}xes is an
open covering of K, since

f(K) C Uuoc = Kgf_l (Uuoc> = Uf_l(uoc)

xel xel xel

then using the fact that K is compact, there exists a finite subcollection of { f~1(Uy) }xes such
that

ke U (u)

similarly,

thus, {Uy, }"_; is a finite subcovering of K.
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Exercise 2: Gronwall’s Inequality (Basic Case)

This a useful inequality in the theory of ODE.

Let L > 0 be a positive constant, and C be any real constant. Suppose y(t) is a continuous func-
tion defined on a time interval I containing to and satisfies

t
y(t) <C+ [ Ly(s)ds (0.1)
fo
forall t € I. Then we have y(t) < Ce '~ forall t € I.
Prove it.

Solution:
In this proof, we will show the case for t > t;. The proof for t < tj is done similarly, thus it is
left for you to verify.

The proof of the Gronwall’s inequality uses a common technique called barrier method. The
idea of the barrier method is to see whether the solution, x(t) = Cel!~"l, of the integral equa-
tion ,

x(t) =C+ [ Lx(s)ds (0.2)

fo
lies above the y(t) satisfying (0.1). Graphically, the desired result would be y(t) < x(t) for all
t > towheret € I.

We will apply a commonly used trick in theory of ODE/PDE, called "e-trick", to show our
desired result.

Given any ¢ > 0, for any ¢ € I, equation (0.1) can be written as
y(t) < (C+e)+ t: Ly(s)ds (0.3)
Let x, () := (C 4+ ¢)ell*~1l, which satisfies
xe(t) = (C+e) + ths(s) ds (0.4)

fo

forany t € I.

At the point t = ty, from (0.3) and (0.4), we see that y(tp) < C+¢ and x:(tp) = C +¢,
meaning that y(ty) < x¢(to).

Since we want to show that y(t) < x.(t) forall t > tp and t € I, we assume that there exists
a t; > to such that y(t1) = x¢(t1), such a t; is chosen such that this is the first time y and x,
intersects. In other words, y(t) < x,(t) forall t € [to, t1). Then

/ " (xe(s) — y(s)) ds > 0 (0.5)

to
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However, if we substitute #; into (0.3) and (0.4), then

0= y(t) —xelt) < [ L) ~ wele)) s

fo

but (0.5) tells us that the integral should be strictly larger than 0. This, a contradiction.

Hence, y(t) < x.(t) for all t > to. Since ¢ is chosen arbitrarily, we may take ¢ — 0" and
thus
y(t) < lim (C -|-5)3L(t_t0) — CeL(t—to)

e—0t

forany t > tpand t € I.
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Exercise 3: Gronwall’s Inequality (Variation)

This version of the Gronwall’s inequality replaced the positive constant L in the basic case by

a nonnegative continuous function v : (—oo, c0) — R.

Let C be any real constant and v : (—oo,00) — R be a nonnegative continuous function. Suppose
u : [0,&] — R is a continuous function such that

t

u(t) < C+ ; v(s)u(s)ds (0.6)
forall t € [0,]. Then

u(t) < Cexp (/Otv(s)ds> 0.7)
forallt € [0,«].
Prove it.
Solution:

For any ¢ > 0, from (0.6), we know that
t
u(t) < (C+¢) +/ o(s)u(s) ds 0.8)
0

Now consider ,

% () = (C+e)exp </O v(s)ds)

we verify that it is a solution to the integral equation
t
f(t) = (C+e)+ /O v(s)f(s)dt < f(t) = v(t)f(t)

(f is used for generality). Differentiate x, (), we have
x’(t‘)—(C—i—a)ﬁ X /tv(s) s
ey dt xp 0

d
= (C+e¢)exp </Otv(s)ds> % (/Otv(s)ds>
)

= v()xe(t)
thus it is a solution. For later purposes, we write
t
Xe(£) = (C+¢) —1—/0 v(s)xe(s)ds (0.9)

Now we take a time t; € [0, «] such that t; > fp and u(t1) = x¢(t1), which is the first time

such that u intersects x, . Then

/Otl(u(s) ~ x(s))ds > 0
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since v is nonnegative continuous,
/O " o() (u(s) — x.(s)) ds > 0 (0.10)
However, by (0.8) and (0.9) and substituting t = t;, we have
0=u(t) —x(h) < /Otv(s)(u(s) — x(s)) ds

which contradiction (0.10). Thus, u(t) < x¢(t) for all t € [0, x]. Taking ¢ — 0, we have

u(t) < lim (C+e¢)exp </0tv(s)ds> = Cexp </Otv(s)ds>

e—0t
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